(function(root, factory) { if (typeof define === 'function' && define.amd) { // AMD. Register as an anonymous module. define(['exports', 'echarts'], factory); } else if ( typeof exports === 'object' && typeof exports.nodeName !== 'string' ) { // CommonJS factory(exports, require('echarts/lib/echarts')); } else { // Browser globals factory({}, root.echarts); } })(this, function(exports, echarts) { var log = function(msg) { if (typeof console !== 'undefined') { console && console.error && console.error(msg); } }; if (!echarts) { log('ECharts is not Loaded'); return; } var colorPalette = [ '#2ec7c9', '#b6a2de', '#5ab1ef', '#ffb980', '#d87a80', '#8d98b3', '#e5cf0d', '#97b552', '#95706d', '#dc69aa', '#07a2a4', '#9a7fd1', '#588dd5', '#f5994e', '#c05050', '#59678c', '#c9ab00', '#7eb00a', '#6f5553', '#c14089' ]; var theme = { color: colorPalette, title: { textStyle: { fontWeight: 'normal', color: '#008acd' } }, visualMap: { itemWidth: 15, color: ['#5ab1ef', '#e0ffff'] }, toolbox: { iconStyle: { borderColor: colorPalette[0] } }, tooltip: { borderWidth: 0, backgroundColor: 'rgba(50,50,50,0.5)', textStyle: { color: '#FFF' }, axisPointer: { type: 'line', lineStyle: { color: '#008acd' }, crossStyle: { color: '#008acd' }, shadowStyle: { color: 'rgba(200,200,200,0.2)' } } }, dataZoom: { dataBackgroundColor: '#efefff', fillerColor: 'rgba(182,162,222,0.2)', handleColor: '#008acd' }, grid: { borderColor: '#eee' }, categoryAxis: { axisLine: { lineStyle: { color: '#008acd' } }, splitLine: { lineStyle: { color: ['#eee'] } } }, valueAxis: { axisLine: { lineStyle: { color: '#008acd' } }, splitArea: { show: true, areaStyle: { color: ['rgba(250,250,250,0.1)', 'rgba(200,200,200,0.1)'] } }, splitLine: { lineStyle: { color: ['#eee'] } } }, timeline: { lineStyle: { color: '#008acd' }, controlStyle: { color: '#008acd', borderColor: '#008acd' }, symbol: 'emptyCircle', symbolSize: 3 }, line: { smooth: true, symbol: 'emptyCircle', symbolSize: 3 }, candlestick: { itemStyle: { color: '#d87a80', color0: '#2ec7c9' }, lineStyle: { width: 1, color: '#d87a80', color0: '#2ec7c9' }, areaStyle: { color: '#2ec7c9', color0: '#b6a2de' } }, scatter: { symbol: 'circle', symbolSize: 4 }, map: { itemStyle: { color: '#ddd' }, areaStyle: { color: '#fe994e' }, label: { color: '#d87a80' } }, graph: { itemStyle: { color: '#d87a80' }, linkStyle: { color: '#2ec7c9' } }, gauge: { axisLine: { lineStyle: { color: [ [0.2, '#2ec7c9'], [0.8, '#5ab1ef'], [1, '#d87a80'] ], width: 10 } }, axisTick: { splitNumber: 10, length: 15, lineStyle: { color: 'auto' } }, splitLine: { length: 22, lineStyle: { color: 'auto' } }, pointer: { width: 5 } } }; echarts.registerTheme('macarons', theme); });

References

1. Wick RR, Howden BP, Stinear TP. Autocycler: Long-read consensus assembly for bacterial genomes. bioRxiv. 2025. doi:10.1101/2025.05.12.653612.
2. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A. Bakta: Rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microbial Genomics. 2021;7. doi:https://doi.org/10.1099/mgen.0.000685.
3. Birolo G, Telatin A. BamToCov: An efficient toolkit for sequence coverage calculations. Bioinformatics. 2022;38:2617–8. doi:10.1093/bioinformatics/btac125.
4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular biology. 1990;215:403–10.
5. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nature methods. 2012;9:357.
6. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular Biology and Evolution. 2021;38:4647–54. doi:10.1093/molbev/msab199.
7. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997. 2013.
8. Vasimuddin M, Misra S, Li H, Aluru S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In: 2019 IEEE international parallel and distributed processing symposium (IPDPS). IEEE; 2019. p. 314–24.
9. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research. 2015;25:1043–55. doi:10.1101/gr.186072.114.
10. De Coster W, Rademakers R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics. 2023;39:btad311. doi:10.1093/bioinformatics/btad311.
11. Zheng J, Ge Q, Yan Y, Zhang X, Huang L, Yin Y. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Research. 2023;51:W115–21. doi:10.1093/nar/gkad328.
12. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–9. doi:10.1093/bioinformatics/bts378.
13. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular Biology and Evolution. 2021;38:5825–9. doi:10.1093/molbev/msab293.
14. Zhou Y, Chen Y, Chen S, Gu J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90. doi:10.1093/bioinformatics/bty560.
15. Chen S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta. 2023;2:e107. doi:https://doi.org/10.1002/imt2.107.
16. Andrews S. FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
17. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8.
18. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:12073907. 2012.
19. Escudié F, Auer L, Bernard M, Mariadassou M, Cauquil L, Vidal K, et al. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics. 2018;34:1287–94. doi:10.1093/bioinformatics/btx791.
20. Bernard M, Rué O, Mariadassou M, Pascal G. FROGS: a powerful tool to analyse the diversity of fungi with special management of internal transcribed spacers. Briefings in Bioinformatics. 2021;22. doi:10.1093/bib/bbab318.
21. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal. 2011;17:10–2.
22. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from illumina amplicon data. Nature methods. 2016;13:581.
23. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate illumina paired-end reAd mergeR. Bioinformatics. 2013;30:614–20.
24. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
25. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular biology and evolution. 2013;30:772–80.
26. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one. 2010;5:e9490.
27. Schliep KP. Phangorn: Phylogenetic analysis in r. Bioinformatics. 2011;27:592–3.
28. Rumbavicius I, Rounge TB, Rognes T. HoCoRT: Host contamination removal tool. BMC bioinformatics. 2023;24:371.
29. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with kaiju. Nature communications. 2016;7:11257.
30. Lab H. KneadData is a tool designed to perform quality control on metagenomic and metatranscriptomic sequencing data, especially data from microbiome experiments. 2022. https://github.com/biobakery/kneaddata.
31. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with kraken 2. Genome biology. 2019;20:1–13.
32. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics. 2015;31:1674–6.
33. Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
34. Ahsan MU, Liu Q, Fang L, Wang K. NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks. Genome biology. 2021;22:261.
35. McMurdie PJ, Holmes S. Phyloseq: An r package for reproducible interactive analysis and graphics of microbiome census data. PloS one. 2013;8:e61217.
36. Mariadassou M. Phyloseq-extended: Various customs functions written to enhance the base functions of phyloseq. 2018. https://github.com/mahendra-mariadassou/phyloseq-extended.
37. Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. doi:10.1093/bioinformatics/btu153.
38. Okonechnikov K, Conesa A, Garcı́a-Alcalde F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2015;32:292–4.
39. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5. doi:10.1093/bioinformatics/btt086.
40. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic acids research. 2023;51:D690–9.
41. Shen W, Le S, Li Y, Hu F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/q file manipulation. PloS one. 2016;11:e0163962.
42. Vorderman RHP. Sequali: Efficient and comprehensive quality control of short- and long-read sequencing data. Bioinformatics Advances. 2025;5:vbaf010. doi:10.1093/bioadv/vbaf010.
43. Benoit G, Peterlongo P, Mariadassou M, Drezen E, Schbath S, Lavenier D, et al. Multiple comparative metagenomics using multiset k-mer counting. PeerJ Computer Science. 2016;2:e94.
44. Smolka M, Paulin LF, Grochowski CM, Horner DW, Mahmoud M, Behera S, et al. Detection of mosaic and population-level structural variants with Sniffles2. Nature biotechnology. 2024;42:1571–80.
45. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology. 2012;19:455–77. doi:10.1089/cmb.2012.0021.
46. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature biotechnology. 2015;33:290–5.
47. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G, Vezina B, et al. Trycycler: Consensus long-read assemblies for bacterial genomes. Genome biology. 2021;22:266.
48. Wick LMAG Ryan R. AND Judd. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Computational Biology. 2017;13:1–22. doi:10.1371/journal.pcbi.1005595.
49. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8. doi:10.1093/bioinformatics/btr330.