flowchart LR
A{node 1}-- is -->B(node 2)
A-- has -->C[node 3]
Quarto - Gitlab Pages
5 février 2026
Pour organiser sa propre activité d’analyse ou de développement
Quarto pour créer ses documents…
…stockés sur un dépôt Gitlab hébergé par la forge institutionnelle…

Système de publication scientifique et technique open-source
---
shorttitle: "Introduction to the R language"
lang: fr
image: "preview.png"
Module: 12
Registration: '<div class="progress"><div aria-valuemax="100" aria-valuemin="0" class="progress-bar" role="progressbar" style="width: 50%;"> 50 % </div></div>'
Duration: 2 days
Requirements: None
Date: March 10-11
---
---
title: "Metabarcoding analysis (16S rRNA marker) with FROGS 5.0.1 in command line"
author:
- name: Olivier Rué
email: olivier.rue@inrae.fr
orcid: 0000-0001-7517-4724
affiliations:
- name: Migale bioinformatics facility
address: Domaine de Vilvert
city: Jouy-en-Josas
state: France
date: "2025-05-02"
lang: en
image: preview.png
date-modified: today
categories: [metabarcoding, FROGS, command line]
number-sections: false
license: "CC BY-SA"
resources:
- media/affiExplorer.webm
- media/easy16S.webm
format:
html:
dot-format: png
page-layout: full
editor:
markdown:
wrap: sentence
execute:
engine: knitr
---
The purpose of this post is to show you how to analyze 16S metabarcoding datasets (Illumina 16S V3-V4 region) from the command line with **FROGS** @frogs, @frogsITS **version 5.0.1** on the migale `front` server and how to explore data in a `BIOM` file with **phyloseq** @phyloseq.
# Introduction
**FROGS** @frogs, @frogsITS is a tool dedicated to metabarcoding data analysis, available on a Galaxy server and from command line.
**Phyloseq** @phyloseq is the reference R package for dealing with metabarcoding data.
::: callout-note
The analyses performed in this document have been performed on the Migale cluster `front.migale.inrae.fr` and `rstudio.migale.inrae.fr`.
You can easily reproduce the analyses if you have got an account on our infrastructure.
If you are not familiar with the Migale infrastructure, you can read the [dedicated post](https://tutorials.migale.inra.fr/posts/migale/).
:::
::: callout-warning
This post is intended neither to provide an in-depth analysis of the dataset nor to answer biological questions (refer to <a href="https://documents.migale.inrae.fr/posts/tutorials/chaillou-16s/">our other tutorial</a> instead).
It is rather an illustration of the technical possibilities and various tools offered by the Migale infrastructure for this kind of data.
Please be aware that the parameters of the tools used here are tailored to this particular dataset and should be adapted to your own needs
:::
---
title: "Documenter et diffuser sans trop d'efforts"
subtitle: "Quarto / Gitlab Pages"
author:
- name: "Olivier Rué"
email: olivier.rue@inrae.fr
orcid: 0000-0001-7517-4724
affiliations:
- name: Migale bioinformatics facility
address: Domaine de Vilvert
city: Jouy-en-Josas
state: France
draft: true
lang: fr
toc: false
date: "2026-02-05"
date-format: long
image: preview.jpg
from: markdown+emoji
format:
inrae-revealjs:
header-logo: "migale-logo.png"
header-logo-link: "https://documents.migale.inrae.fr"
preview-links: true
slide-number: true
self-contained: false
chalkboard: true
categories:
- Quarto
footer: "Wébinaires CATI - Retours d'expériences"
filters:
- reveal-header
lightbox: auto
---

Wébinaires CATI - Retours d’expériences