1. Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A. The road to metagenomics: From microbiology to DNA sequencing technologies and bioinformatics. Frontiers in genetics. 2015;6:348.
2. Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. Briefings in bioinformatics. 2019;20:1125–36.
3. Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu A, Bian Z, et al. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Computational and Structural Biotechnology Journal. 2021;19:6301–14. doi:
https://doi.org/10.1016/j.csbj.2021.11.028.
4. Stoler N, Nekrutenko A.
Sequencing error profiles of Illumina sequencing instruments. NAR Genomics and Bioinformatics. 2021;3. doi:
10.1093/nargab/lqab019.
5. Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome biology. 2014;15:1–12.
6. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with kaiju. Nature communications. 2016;7:11257.
7. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.
SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology. 2012;19:455–77. doi:
10.1089/cmb.2012.0021.
8. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics. 2015;31:1674–6.
9. Vollmers J, Wiegand S, Kaster A-K. Comparing and evaluating metagenome assembly tools from a microbiologist’s perspective-not only size matters! PloS one. 2017;12:e0169662.
10. Mikheenko A, Saveliev V, Gurevich A.
MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2015;32:1088–90. doi:
10.1093/bioinformatics/btv697.
11. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997. 2013.
12. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
13. Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
14. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
15. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW.
CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research. 2015;25:1043–55. doi:
10.1101/gr.186072.114.
16. Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. doi:
10.1093/bioinformatics/btu153.
17. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC bioinformatics. 2010;11:1–11.
18. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Mering C von, et al.
Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Molecular Biology and Evolution. 2017;34:2115–22. doi:
10.1093/molbev/msx148.
19. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nature Methods. 2014;12:59–60. doi:
10.1038/nmeth.3176.
20. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of molecular biology. 2016;428:726–31.
21. Fu L, Niu B, Zhu Z, Wu S, Li W.
CD-
HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2. doi:
10.1093/bioinformatics/bts565.
22. Liu Y-X, Qin Y, Chen T, Lu M, Qian X, Guo X, et al.
A practical guide to amplicon and metagenomic analysis of microbiome data. Protein & Cell. 2020;12:315–30. doi:
10.1007/s13238-020-00724-8.
23. Benoit G, Mariadassou M, Robin S, Schbath S, Peterlongo P, Lemaitre C.
SimkaMin: Fast and resource frugal de novo comparative metagenomics. Bioinformatics. 2019. doi:
10.1093/bioinformatics/btz685.
24. Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nature Communications. 2018;9. doi:
10.1038/s41467-018-04964-5.
25. Steinegger M, Mirdita M, Söding J. Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold. Nature Methods. 2019;16:603–6. doi:
10.1038/s41592-019-0437-4.
26. Boyd JA, Woodcroft BJ, Tyson GW.
GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Research. 2018;46:e59–9. doi:
10.1093/nar/gky174.
27. Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: An advanced analysis and visualization platform for ‘omics data.
PeerJ. 2015;3:e1319. doi:
10.7717/peerj.1319.
28. Kieser S, Brown J, Zdobnov EM, Trajkovski M, McCue LA.
ATLAS: A snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data.
BMC Bioinformatics. 2020;21. doi:
10.1186/s12859-020-03585-4.
29. Kolmogorov M, Rayko M, Yuan J, Polevikov E, Pevzner P.
metaFlye: Scalable long-read metagenome assembly using repeat graphs. 2019. doi:
10.1101/637637.
30. Shakya M, Lo C-C, Chain PS. Advances and challenges in metatranscriptomic analysis. Frontiers in genetics. 2019;10:904.